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Abstract

We extend the family of corner balance spatial discretizations to spatial grids of arbitrary polyhedra.
This scheme enforces balance on subcell volumes called corners.  It produces a lower triangular
matrix for sweeping, is algebraically linear, is positive in a source-free absorber, and produces a
robust and accurate solution in thick diffusive regions.  We briefly derive the method, present some
analysis results, and demonstrate performance on several very different test problems.

1 Introduction

Recently there has been significant effort devoted to the development of accurate spatial
discretization schemes for particle transport on unstructured three-dimensional grids
(McGhee, 1996, Morel, 1996, McGhee, 1997, Wareing, 1996, Miller, 1998).  This effort has
produced spatial discretization methods for hexahedral, degenerate hexahedral, and tetrahedral
grids. Here we report our initial effort toward a “corner balance” (CB) discretization for transport
on a more general grid that can contain arbitrary polyhedral cells.

Our starting point is a CB method previously reported for two-dimensional grids of arbitrary
polygons (Adams, 1997, Adams, 1998).  Our goal is a three-dimensional CB method with the
following attractive properties: 1) robust and accurate solution in thick diffusive regions; 2) 
conservation on subcell (corner) volumes; 3) algebraically linearity, 4) positivity in source-free pure
absorbers; 5) formulation that permits sweeping with no matrix inversions; 6) minimal spreading of
a beam in a vacuum; and 7) 2nd-order or better truncation error.  Some of these desired properties
(e.g. numbers 3, 4 and 7) are in conflict; in these cases we have prioritized the properties essentially
in the order given.  (For example, property #3 takes precedence over property #6.)

2 Development of Discretization

2.1 Balance

We begin with the time-independent one-group discrete ordinates transport equation,
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As with all CB methods, our discretization will preserve balance on corner subcells and thus on
cells.  There is corner volume associated with each vertex of each cell as shown in Fig. 1.  The cell
midpoint, a vertex, and the face midpoints for each face containing the vertex of interest define a
corner volume. If we integrate Eq. (1) over the corner volume we have the following balance
equation

a V V Qm f c m f c
f c

c tc m c c m c, ( ) , ( ) , ,ψ σ ψ
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Here am,f(c) represents the dot product between outward normal of each face and the quadrature
direction (

v v

Af m¼W ).

2.2 Wedges

It is difficult to construct accurate closures for polyhedral cells or corners.  To avoid this
complication we introduce another subcell volume that we call a wedge.  A wedge is always a
tetrahedron and is defined by a cell vertex, a cell midpoint, a cell-face midpoint, and an edge
midpoint.  This regularity makes wedges much simpler than corners to work with. Examples of
wedges are shown in Fig. 1.

We do not enforce particle balance on wedges, but we do enforce the following “pseudo-balance”
equation, in which the corner-average source appears:

a a a a V V Qm fep m fep m fez m fez m pez m pez m fpz m fpz t c w m w w m c, , , , , , , , , , ,ψ ψ ψ ψ σ ψ+ + + + = (3)

Again am,xxx represents the dot product of the quadrature direction and the outward normal of each
wedge face.  Since wedges are always tetrahedrons they have four faces, which we have named by
their vertices: fep, fez, pez and fpz.  Note that the sum of Eqs. (3) for all wedges in a corner yields
Eq. (2).

Figure 1.  Examples of a cell, a corner subcell, and two wedge subcells.
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2.3 Closure Equations

Our upstream corner balance (UCB) method is defined by the wedge psuedo-balance equation (3)
[which ensures balance on corners and cells] in conjunction with closure equations that relate
surface-averaged and wedge-averaged intensities.  We present these closures now, then explain how
they produce many of the desired properties that were listed in the introduction.

We choose a “step” closure on the wedge surface, fep, that is on the cell surface:
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On wedge surfaces that are internal to a given corner (fpz and pez) we use:
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We define optical thicknesses and an averaged incident intensity:
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for xxx = fep, fpz, pez, fez.  (We shall define the f, e, and z Q/σt terms shortly.)  Our final closure is
on the wedge surface, fez, that separates two corners in the same cell:
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One of our stated goals is to be able to “sweep” the grid for a given direction m one subcell at a
time, without having to invert matrices because subcells are coupled.  The above closures
accomplish this goal; the only “downstream” information needed in a given wedge is source
information, which is taken as given during a sweep.  Another goal that we have achieved is
algebraic linearity, and another is conservation on subcells.



Our fourth stated goal is positivity in source-free pure absorbers.  We can show that in the absence
of any Q terms the wedge-averaged intensity and all exiting intensities are non-negative given non-
negative incident intensities.  Thus, we achieve the “positivity” goal.

Our first stated goal is an accurate and robust solution in thick diffusive regions. The above closure
equations are designed such that the leading-order UCB solution in a diffusive region will satisfy
Palmer’s vertex-centered discretization of the diffusion equation (Palmer, 1995).  This
discretization, which was designed for arbitrary polyhedra, enforces conservation over “dual cells”
centered at vertices, where a dual cell is the union of corner subcells that touch the given vertex:
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Here φp is the scalar flux at the vertex p, and fez denotes the surfaces of the dual cell. The
summations are over all indicated objects that touch vertex p.  Fig. 2 shows a fez surface along with
the wedges that share it and the two vertices (p and p′) that those wedges touch.

To complete the definition of Palmer’s discretization we must define the net currents across the fez
surfaces, { }

r

J fez , in terms of the scalar fluxes at vertices, {φp}.  Given cellwise constant cross

sections, Palmer’s equation for this can be written as follows, where the notation follows Fig. 2.
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In this equation p′ refers to the cell vertex of the wedge that shares the fez face with the wedge w,
whose cell vertex is p.  In Eq. (9) there are scalar fluxes at cell midpoints {φz}, cell-face midpoints
{ φf}, and cell-edge midpoints {φe}.  In Palmer’s method each of these is defined to be an interpolant
of surrounding vertex scalar fluxes.  Eqs. (8), (9), and the interpolating prescriptions (Palmer, 1995)
completely define Palmer’s diffusion discretization.

We remark that Palmer’s interpolations make no error when the exact scalar flux is a linear function
of position.  Eq. (9) is also exact in that limit; thus, Palmer’s scheme exactly captures linear
solutions regardless of grid distortion.  This is a very strong result and is partly why we chose this
method for our wedge-based UCB to mimic in diffusive problems.  We further note that the
coefficient matrix associated with Palmer’s scheme is not symmetric.
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Figure 2.  Adjacent wedges in neighboring corners of the same cell.
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We define the f, z, and e Q/σt terms in our closure equations to be interpolants of [Q/σt]c terms using
the Palmer’s interpolating formulas.  For this purpose, the [Q/σt]c for a given corner c is treated as if
it were the value of Q/σt at that corner’s vertex p.  Our method is therefore completely specified by
the wedge pseudo-balance equation (2); the closure equations (4), (5), and (7); the definitions (6);
and prescriptions for interpolating.

To determine the behavior of our UCB method in thick diffusive regions we employ an asymptotic
analysis that has become standard (Adams, 1997).  In this analysis we “scale” the cross sections and
sources as being O(1) quantities multiplied or divided by a small parameter ε:  σt → σt/ε; σa → εσa;
S → εS.  We expand all unknowns in power series in ε and collect terms of the same ε order in each
discrete equation.  Brevity requirements prevent a detailed display, but we shall describe some of
the key results.

The balance equation (2) causes the leading-order wedge-averaged angular flux to be isotropic and
equal for all wedges in a given corner.  The closures (4), (5) and (7) cause the leading-order
intensities on the fez, fpz, and pez surfaces to be isotropic in thick diffusive regions:
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Equation (10d) holds for all directions m if fep is in the interior of the diffusive region; it holds only

for outgoing directions if fep is on the boundary.  In the latter case we find that φ c
( )0  equals a

cosine-weighted integral of the incident intensity, which is known as a “Marshak” boundary
condition.

A consequence of Eqs. (10a-c) and the fep closure (4) is that the leading-order solution is the same
in every corner and wedge that touches the same vertex:
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We now show how Eq. (7b) produces an O(ε) net current that satisfies Eq. (9).  First we replace the
wedge-averaged unknown in Eq. (7b) using the wedge pseudo-balance equation (2) and solve the
resulting equation for ψm,fez:
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The O(ε) component, for afez,m>0, is:
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The O(ε) net current across the fez surface follows from Eq. (12b) its counterpart for afez,m<0:
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Here we have assumed that our quadrature set correctly integrates the following half range integral:
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If we combine terms in Eq. (13) and recognize that Eq. (11) identifies leading-order corner scalar
fluxes as vertex scalar fluxes, we obtain Eq. (9).  That is, the asymptotic analysis says that the
leading-order UCB solution will satisfy Palmer’s discretization in thick diffusive regions.
However, the analysis also predicts that the leading-order UCB solution will satisfy Marshak
boundary conditions in the presence of unresolved boundary layers.  In pathological problems these
boundary conditions can lead to significant inaccuracies in the solution; thus, the attainment of our
first goal is not complete.

Our remaining goals are good truncation error and minimal spreading of a beam in a vacuum.
These goals are in conflict with the goals of positivity and algebraic linearity, and we have been
unable to achieve them to the degree that we had originally hoped.  We will address this matter
further in our discussions of numerical results and future work.

2.4 Summary

We have devised a 3D UCB method with the following properties:

w In a thick diffusive problem with a polyhedral-cell grid the leading-order interior solution
satisfies the vertex-centered diffusion discretization developed by Palmer for solving diffusion
problems on polyhedral-cell grids.  This leading-order solution satisfies a Marshak boundary
condition.

w It enforces strict particle conservation on corners (and thus on cells).
w It is algebraically linear and is positive in source-free pure absorbers.
w It allows transport sweeps to proceed wedge by wedge in the direction of particle flow,

eliminating any downstream coupling of wedge unknowns and thus eliminating any need for
matrix inversions.



3 Numerical Results

In this section, we present the results from test problems designed to illustrate the strengths and
weakness of our wedge-based UCB spatial discretization.  Our first problem is a fine-mesh study on
a regular grid, with comparisons against established methods.  The second problem is a fully
reflected sphere that demonstrates the polyhedral capability as well as the ability to handle
arbitrarily oriented reflecting surfaces.  In a third problem we demonstrate numerically its
performance in the thick diffusion limit.  Unfortunately, due to technical difficulties, we are unable
to present this result here.  However, preliminary results suggest that even on a distorted grid the
wedge-based UCB method exactly captures a linear solution in the thick diffusion limit, which is
what one would expect from a scheme that limits to Palmer’s diffusion discretization.

Our first XYZ problem compares the new UCB method against the diamond differencing (DD) and
linear discontinuous (LD) methods for fine and intermediate cells in regular grids.  Results from the
latter two methods were obtained from DANTSYS.  The test problem is a source-free brick,
2x20x20 mean-free paths, with an isotropic incident intensity on the minimum x-face. The removal
cross section is half of the total. There are reflective boundary conditions on the top, bottom, left
and right faces to simulate a slab problem. Each problem used a S4 level-symmetric quadrature set.
Each method computed the exiting flow rate (EFR) from the maximum x-face and the total
absorption rate (AR) for various mesh spacings.  The errors listed in Table 1 were generated by
assuming that a 128x128x128 3D LD problem obtains the correct solution.

Table 1.  Errors in exiting flow rate (EFR) and absorption rate (AR), various methods and grids.

Method
DD error LD error 3D UCB error

Number
of cells

AR EFR AR EFR AR EFR
2x4x4 N/A N/A 7.947 6.530
4x4x4 6.646 6.839 1.511 0.641 2.469 1.664
8x4x4 1.669 1.719 0.218 0.087 0.665 0.423
16x4x4 0.330 0.431 0.029 0.012 0.172 0.107
32x4x4 0.104 0.108 0.006 0.002 0.044 0.027
64x4x4 0.026 0.029 0.0 0.001 0.012 0.007

There are several points worth noting.  First, both LD and DD will obtain the same solution to this
problem that their slab-geometry version would obtain (given the same quadrature set).  This
solution is independent of the number of cells along the y and z axes (where the solution is
constant).  The same is not true of the wedge-based UCB scheme we have developed here.  It does
not obtain the slab-geometry UCB solution except in the limit of large cell dimensions in the y and z
dimensions.  As one consequence, this means that (for example) the 32x32x32 UCB solution is less
accurate than the 32x4x4 solution in this test problem.  While our table seems to indicate that 3D
UCB has 2nd-order truncation error, theoretical studies and more extensive numerical studies
convince us that rigorously it is only 1st-order accurate.

Our second test problem is a fully-reflected spherical k-eigenvalue problem.  Our spherical mesh
consists of 19 slices of tetrahedral and hexahedral cells, each slice containing 10 layers of 10 cells
as shown in Fig. 3.  The 2-group cross section data without up-scatter is as follows: σt=[0.70984,
1.5291], σs=[0.46025, 0.0, 0.14310, 0.93424], νσf=[3.9254, 10.8123], χ=[0.35345, 0.64655].
When solved with an S6 level-symmetric quadrature set, our XYZ UCB scheme produces the
solution k∞=2.01180 while the analytic solution is 2.01185.



We believe that the discrepancy between the analytic and numerical solutions is an artifact of the
reflecting boundary algorithm used on the arbitrarily oriented surfaces.  Currently, this algorithm
does not preserve the isotropic spectrum of the exiting angular flux upon reflection.  If we instead
use a white boundary condition our scheme captures the analytic solution exactly to the accuracy
specified by our convergence criteria.  But, to improve the existing reflecting boundary algorithm so
that the exiting angular flux spectra is preserved would be an area for future work.

This problem is not a stressful test of a spatial discretization scheme, for the correct solution is
simply constant. However, it does demonstrate the ability of UCB to operate on an unstructured
hexahedral/tetrahedral mixed mesh, and also our implementation of reflective boundary conditions
on arbitrarily oriented faces.

4 Summary and conclusions

We have successfully devised a wedge-based upstream corner-balance (UCB) method for three-
dimensional grids of arbitrary polyhedra.  The method has many desirable qualities.  It satisfies
robust and accurate equations in the thick diffusion limit, capturing linear solutions regardless of the
grid.  It has strict particle conservation and can use fully upstream transport sweeps, with no matrix
inversions.  It is algebraically linear yet stays non-negative in a source-free pure absorber.

Our wedge-based UCB scheme is not without drawbacks.  Given a thick diffusive problem with a
boundary layer that is not resolved by the grid, this method, with its “Marshak” boundary condition,
runs the risk of being in error by up to a factor of two in the worst case.  The method appears to be
only 1st-order accurate; we do not believe it is possible to make it higher order as long as the only
information transferred at wedge surfaces is the surface average.

One solution to these drawbacks could be to extend the corner-based UCB method to three-
dimensional grids of arbitrary polyhedra.  This is difficult because each corner can have a different
shape and even a different number of faces.  Nevertheless, such a corner-based method is worth
pursuing for several reasons:  it will likely be 2nd-order accurate or better; it should allow us to

Figure 3.  Fully reflected spherical mesh of tetrahedral and hexahedral cells.



build in a boundary condition that is much more accurate than Marshak; it should obtain the 1D
UCB solution in a 3D problem that has 1D symmetry; and it should be less expensive than the
wedge-based method because it will compute significantly fewer unknowns.
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